Home   »   Archive by category "Modeling"

Archive for the Modeling Category

Energy-Model

With a new year upon us, exciting times are ahead as we announce that IES will be sponsoring the Practitioner Modeling Competition which is being organized by the IBPSA-USA San Francisco Bay Area Chapter as part of Building Simulation 2017! The challenge, which is open to individual practitioners or teams, provides a competitive forum for non-student members of the building simulation community and aims to encourage wider participation in the conference.

This year’s competition requires entrants to use computer simulation to design and test a laboratory building with mixed uses including labs, offices and classroom spaces located in downtown San Francisco, CA, USA. You can download the competition brief here to find out more.

Not only will the winning entrant have the opportunity to showcase their submission at the Building Simulation conference, due to take place in San Francisco between 7-9 August 2017, we are pleased to confirm that the winning entry will also receive a cash prize of USD $1,500, courtesy of IES!

If you feel like giving it a go, interested candidates are invited to register before the deadline on 6th February 2017, with completed entries then due by 31st March 2017.

So, good luck to all you prospective entrants – we look forward to seeing the winning entry at BS2017 in August!

Going-Green (2)Last month I had the pleasure of being involved in the 4th Going Green Conference, which took place in Gauteng from 18-20 October. Hosted by the Green Building Design Group in partnership with the Gauteng province, the organisers aimed to “create a more connected platform for all the various actors in government to engage and to recognise that public assets can be used as a test case and lead by example to the wider country objectives on these policy directives.”

What set this event apart from some of the others I’ve attended was the focus on knowledge sharing and creating a platform for the private sector to share their knowledge with the public sector and with final year university design students from both Architectural and Engineering fields. Click here for an insightful synopsis of the event from Songo Didiza, Executive Director at the Green Building Design Group.

IES have a wealth of practical experience and measurable results from analysis of various buildings across the world. There is a global awareness of the power of data, but we need to further exploit this data to improve our buildings in South Africa. With this in mind, the topic I chose from my presentation was: OMG! Operational data + Modelling = Great Savings.

The presentation focussed on the need to evaluate building performance against design intent, and quantify operational gaps in the same level of detail with which we analyse design in simulation software. To do this, we need to consider the feedback loops that can exist within building lifecycle data, and how this should be managed by BIM processes. Designers can benefit from lessons learnt on previous projects, and the O & M team can benefit by an audit trail of the design intent and records of commissioning procedures and tests for the building they are managing.

At present, buildings are often an untapped data asset. By taking the operational data from buildings and using it to calibrate the operational model, we can generate highly accurate calibrated models, which enable owners and FM’s to analyse planned interventions and evaluate their impact with a high degree of accuracy, to assess viability before commencing work.

Let us consider a single data stream from a building. If we view monthly metred data, we have 12 data points, but if we have data measured every 30 minutes by a smart meter, we have 17520 data points! If we then collect data from several streams, the potential for a clear image for comparative analysis increases, especially where this data is logged effectively, clearly named and well managed.

Data-points-view

It is estimated that 80% of cost lies beyond the construction team involvement. For any client with a portfolio of real estate, there are real benefits available from data analysis:

  • Creation of benchmarks, to identify low or high performers and outliers, indicating a need for further investigation of the building fabric and systems, and its operational strategies.
  • Support both better informed design of new buildings, and future strategy for O & M

In my presentation I presented various healthcare examples of where our IES consulting team have assisted with BMS Data Logging and collation on a cloud-based platform, enabling data reviews for:

  • BMS analytics, including tracking and monitoring building performance
  • Independent performance review through auditing the building against its Key Performance Indicators
  • Energy consumption benchmarking Building Simulation was then used to propose suggestions and evaluate their impacts and compliance.

The unique skillset of our consulting team enables our analysis to compare different results and postulate reasons for the differences. For example, we utilised BMS data logging and analytics to evaluate a portfolio of 6 similar healthcare facilities. In reviewing the supply air pressure data for the operating theatres, we identified many opportunities for immediate savings from operational decisions, as shown below.

Supply-Air-Pressure

The technology is available now to deliver projects that incorporate BIM and energy modelling in an integrated design process that extends to building hand-over, commissioning and facilities management. As owners start to demand buildings which operate closer to design predictions, we can start to use operational data to inform dynamic building simulations of improved design and retrofit, and provide enhanced operational models that enable ongoing monitoring of performance and great savings.

If you want to find out how more about how operational data + modelling = great savings, drop me an email and I can provide you with more information about my presentation. I have no doubt that the 5th Going Green Conference will be even better and I look forward to being involved in more knowledge sharing again next year.

_MG_4156

Photo Credit: Onix Building, Lille – Architect: Dominique Perrault

Over the past two years IES has collaborated with Somfy and Philips Lighting to analyse their shade & light combined solution “Light Balancing System” and its potential impact on energy savings. Most recently IES analysed the potential energy savings of a pilot project, the Onix office building in Lille. In this blog post, we invited Christelle Granier from Somfy to tell us a bit more about the collaboration, why they chose to work with IES and the importance of manufacturing companies integrating with the world of Building Physics and Building Performance Analytics…

We (Somfy and Philips) wanted to find a way to provide building design professionals with an effective and worthwhile product that would fit in with a holistic design process and help them to design both comfortable and energy efficient buildings. To do this we needed to validate the impact that the Light balancing system had on energy consumption.

To us, IES was the best choice because it is well known for its advanced dynamic simulation tools with the capabilities to conduct the most accurate analysis. After working closely with its Business Development Consultant, Luc Delestrade for over a year, he taught us a great deal which changed the way in which we demonstrated our solution.

More and more building regulations are being implemented worldwide and current ones are becoming much more stringent. We knew that in order to help industry professionals comply with these regulations we had to validate the Light Balancing System and prove its effect on a buildings energy consumption. In our pilot study, the Onix Building in Lille we proved that the System could reduce energy consumption by 29% in one year.

We understand that Building Physics and performance analytics is key to validating manufacturers building products.  Collaborations such as this one are extremely important for the future of sustainable building design. IES was vital in helping us prove our work. Automated shading should be part of the lifecycle management of the building. Working with IES helped us to democratise this product and make it more accessible to more building professionals.

The collaboration was a deep learning experience on both sides. We now have a much better understanding of where the Light Balancing system fits in the building lifecycle analysis process and how it effects occupant comfort and energy efficiency. The product should be analysed as part of a holistic model looking at HVAC, lighting and façade which includes automated blinds.

I’d like to extend a big thanks toIES, our collaboration helped to leverage our knowledge and understanding of building physics and performance analytics. I look forward to a future that holds further industry collaborations that help validate manufacturer products and their potential energy savings through building performance analysis.

Can productivity be modelled?

Posted: October 11, 2016 by , Category:Modeling, software

shutterstock_239214301

Health, Wellbeing and…. Productivity! Time has come where we can take a closer, empirical and quantifiable look at productivity. Our recent blog and event on Health & Wellbeing (How to do WELL with IES) has generated significant interest and participation from a wide range of stakeholders. Similarly, the Health and Wellbeing movement, including the WELL standard have been gaining momentum and popularity with building owners, operators and designers. But what is it all about? Investing in the health and wellbeing of our buildings and occupants is often seen as a means to an end. That end is Productivity. From service based organisations who want their office based staff to be more productive to retail stores wishing shoppers to spend a little bit more money, it’s time to start taking Productivity seriously. Integrated Environmental Solutions (IES) have begun to explore this concept further by asking a very simple question: Can Productivity be modelled?

Our Business Development Manager Naghman Khan has addressed this question in his article on our DiscoverIES website, where he presents some initial findings of recent research on being able to quantify and model productivity.  Read the full article.

You can access a full description of the research and results, including how to model health, wellbeing and productivity concepts in the VE, by completing this short form.

Lindsey WELL BlogFor this blog Lindsey Malcolm of XCO2 discusses considerations of building services engineers and the potential role of simulation in catering for health and wellbeing in the building industry.

Health and Wellbeing. A phrase conventionally connoting to rhyming proverbs about the doctor-dodging power of a daily apple. Yet the proverbial days of the catchphrase are seemingly behind us, as ‘Health and Wellbeing’ is escalating into the latest buzzword within the building industry.

Our clients are demonstrating a growing demand for office spaces, retail areas and homes that enhance human health, productivity, and quality of environment. A business case for investment in health has driven interest in the commercial sector, and attention to this new industry buzzword in the retail and residential sector signifies this isn’t a short-term fad.

The vision of Health and Wellbeing is the long-term facilitation of productive and comfortable environments for the building occupant. Well-designed and operated environments should inspire conscious and subconscious positive lifestyle choices, resulting in healthier, more productive building users.

Considerations for design and beyond

Human health and wellbeing can obviously be impacted by an infinite number of factors; however, it is easier to consider if we chop this abstract concept into tangible and quantifiable chunks. Several core categories have been identified within the industry covering a broad spectrum of health and wellness drivers and indicators. These range from environmental (air quality, water quality, lighting) to behavioural (nourishment, fitness and lifestyle choices, working patterns and stress management).

As building designers, it is obviously outside our area of potential provision to shape to dietary and fitness of our building’s user. But implementing health and wellbeing into buildings is a holistic concept, and will have tangible effects on areas within our scope (see Figure 1).

The adjustment for engineers to consider is:

As building designers, it is obviously outside our area of potential provision to shape to dietary and fitness of our building’s user. But implementing health and wellbeing into buildings is a holistic concept, and will have tangible effects on areas within our scope (see Figure 1).

The adjustment for engineers to consider is: shifting our focus from the working of the building to the living of its user.

This shouldn’t be viewed as a trade-off against conventional design considerations such as energy efficiency or carbon emissions – our aim should be to adapt our existing solutions to improve our output for the people who will inhabit the building. This may involve throwing rules of thumb out of the window, or being guided by a forthcoming set of industry benchmarks – only time will tell. But for now, what we do know is that demand for healthier buildings is increasing, and we must respond accordingly to these requirements from our clients.

The Role of Simulation

Modelling and simulation support building design. Therefore, in order to improve our building design with occupants in mind, there is clearly opportunity to integrate cutting-edge areas of building simulation technologies.

Areas that could benefit from a simulation-based predictive approach could include:

  • Utilising CFD to assess indoor air quality;
  • Performing discretised zonal analysis of thermal comfort for individual occupants;
  • Performance and feasibility of different ventilation strategies;
  • Moisture and condensation management;
  • Reverberation and acoustic impacts;
  • Measuring and design ambient and circadian lighting.

An exciting assortment of modelling prospects; however, it is important for us to remember that modelling and simulation should support building design, rather than instructing. Particularly for health and wellbeing, where the benefits of a well-designed healthy building can be negated by poor operational use and user behaviours, the simulation of predictive conditions is less significant for design than other areas of the building industry.

And on a practical note, the feasibility of modelling so many different elements of building services is questionable – in terms of both metric limitations and issues on cost and resource effectiveness. Could an industry-wide interest in healthier buildings facilitate interest in the development of new metrics, as a way of regulating a better standard of living? Possibly so. Yet until that day comes, let us remember that simulation used for health and wellbeing should be taken with a pinch of salt – not too much salt, mind.

A healthy future for the industry

Simulation is a fantastic instrument to demonstrate the tangible benefits of health and wellbeing application. But let’s not forget the ultimate goal of the health and wellbeing – whether it be assessed through WELL or loosely ingrained concepts – is to facilitate a productive and comfortable built environment. Simulation can certainly be used to deliver this, but it cannot be considered a one-stop exercise. It must remain a tool to support operational-focused design and help to enforce the positive behavioural changes we are designing into our buildings.

As the health endemic continues to infect the building industry, a new ‘normal’ standard of building will emerge, requiring innovation and flexibility from all parties involved in the creative process to work with new concepts and metrics. As engineers and simulation specialists we can emphasise a greater focus on occupants, ensuring the holistic approach to health and wellbeing required to make a tangible difference to quality of life.

And as our building designs advance in the enablement of healthy living, our old proverb may just need a re-write. Forget the apples, dodge the doctor; it’s the engineers keeping illness at bay.

Lowdown Showdown 2016 Model

What do you get when you challenge nine interdisciplinary teams to design a net zero (or below) 50,000 ft2, 3-story Outpatient Health Care facility in Omaha, Nebraska? You get ASHRAE’s Lowdown Showdown, an energy modeling competition that showcases the talent and innovation of those in our industry using building performance analysis software.

Last year, Team IES won Best Energy Use Results and we were delighted that the winning streak continued after the team were awarded Best Workflow at SimBuild 2016 in Salt Lake City on August 11th.

This year’s IES team – going under the name Insane Energy Savers – consisted of the following members: Kent Beason, Joanne Choi, Cory Duggin, Alexandra Gramling, Ken Griffin, Amy Jarvis, Shona O’Dea, Igor Seryapin, Irina Susorova, Tristan Truyens, Brian Tysoe, Scott West and Xiangjin Yang.

A remote team meeting for the Insane Energy Savers

A remote team meeting for the Insane Energy Savers

Our Project
Our design started by modifying the massing and program to be as climate responsive as possible, while still maintaining the core mission of an outpatient surgery center.  Any non-critical spaces were migrated to the second and third floors where a common atrium was added in lieu of the circulation program areas.  Exam rooms and office spaces were placed along the perimeter to allow cross ventilation from them through the atrium.  Based on wind roses for the shoulder seasons, when natural ventilation is most viable, the building was rotated for the south façade to be in line with the predominant south eastern wind.

Stair stepping the south façade allows the building to self-shade for the entire cooling season and allows for passive heating in the winter as well as passive reheating of air-change dominated spaces on the first floor.  Since Omaha has a significant heating season, the R-value of the walls, roof and glazing were optimized to reduce heat loss.

The air change constraints in the first floor program caused us to consider it separately.  A separate dedicated outside air system (DOAS) is used for the critical spaces coupled with earth tubes to precool and preheat the required ventilation air.  The non-critical areas use another DOAS with a south facing vertically mounted transpired solar collector for preheating since the windows will be open for cross ventilation during much of the cooling season.  All spaces and both DOAS use a geothermal, water-cooled VRV system for their cooling and heating.

The tilted roof of the atrium was designed to hold photovoltaic panels with a 19.6% efficiency.  Wind turbines were also used to produce the remainder of the energy required to get net zero.

Take a look at the poster below for more info on the project’s energy saving strategies.

Click to enlarge

Click to enlarge

An ‘Insane’ Effort
In my role as team mentor, it was awesome to see first-hand how our talented team used the Virtual Environment to complete this challenge. A lot of work was put in and it paid off when they picked up their award for Best Workflow.

It was a great effort by all involved – not just the insane ones – and it’s fantastic how each team came together to demonstrate how energy modeling tools can be used to make such a positive impact on our built environment. Bring on next year’s challenge!

Click here to see view the Insane Energy Savers’ Lowdown Showdown presentation slides.

Daylight
For many, city living has it all and is the best place to live. This belief can be attributed to common themes;

  • Access to work place, educational, medical, retail and leisure facilities
  • Transport links and reduced travel times
  • Cultural benefits with social possibilities and networking

With this, many developers still see building development in city and brownfield sites as a key area of focus. However residential development poses some interesting challenges perhaps none more so than with respect to visual amenity;

  • Views and privacy
  • Quality and availability of sunlight

Whenever new development is planned there are a number of key parties all with their own interests:

  • The development team eager to gain planning permission whilst minimising risk and associated delay
  • Existing Building Owners and Residents who may be impacted by new developments
  • New Building Owners and Residents keen to ensure they maximise visual amenity

Privacy, daylight, sunlight and immediate outlook are all import factors and should be considered as early as possible in the design stage.

Early daylighting analysis using 3D modelling techniques will improve understanding and mitigate the risks. Using a low cost modelling approach at each design stage helps avoid costly abortive design and construction works.

Daylight, Sunlight and Overshadowing (DSO) assessment can include tests for a range of factors that designers use to make the right decisions:

  • Average Daylight Factor – the amount of daylight in a given space reported as %
  • Annual Probable Sunlight Hours – the expected number or % of sunlight hours for a reference point
  • Overshadowing to Gardens and Shared Space – images showing the change in shadows cast by proposed / existing buildings
  • Glazing % – the level of Glazing on facades / orientations – can be required by Planners
  • Vertical Sky Component – the illuminance ratio at a reference point based on the amount of visible sky – can be required by Planners)
  • Daylight Distribution / No Sky Line – identifies which parts of a room the sky can be seen directly – can be required by Planners)
  • Glare – where there is a potential for ‘dazzle’ occurring when sunlight is reflected from a glazed facade leading to issues for motorist or pedestrians – can be required by Planners)

IES Consulting have the experience to help investigate and interpret the impact on your building design by undertaking the tests summarised above. IES work with you from the concept stage to ensure that building form is well considered and to identify potential problems quickly and help test possible design solutions to reduce planning risks and help avoid the potential for related neighbourly disputes.

Energy vs Cost Modelling

I recently conducted an energy survey at a new healthcare facility and a couple of headline numbers jumped out which I thought could do with some further investigation and validation. So the focus of this Post is specifically around the application of Energy vs Cost Modelling within the Building Performance Analysis industry.

So here are the facts:

  • The building in question is a rural UK healthcare facility
  • Estimated annual electricity spend of £40k
  • Approximately the same spend again on Gas – so another £40k
  • £20k allowance for miscellaneous utilities; standing charges, peak charges, water etc
  • So an approximate annual utility spend of £100k max.

The story sounds ok so far until you consider the total Project Value, a £29-million design/build cost. If we do some very basic lifecycle cost modelling the numbers look like this:

  • £100k per year utility spend
  • After 10-yrs cumulative utility spend of £1-million
  • After 30-yrs cumulative utility spend of £3-million

[Note: No Utility Rate increases, NPV or Discount Rate allowances made in this basic calculation]

As the calculations stand this facility would therefore take 30-years to have a cumulative energy spend of £3-million.

Let’s say that 20% energy savings could be made fairly easily via a £20k energy efficiency spend and that a 1-year ROI would be achievable. So a £20k up front spend on energy efficiency measures generates £20k worth of savings by the end of the first year. Assuming this £20k reduction could be maintained for the remaining 29-years a cumulative saving of £580,000 could be made over the 30-year range.

A 20% saving is a 20% saving and who wouldn’t want an extra £580k in their annual budget, but is it really worth waiting 29-years for?! It seems like such a long time to wait.

Now if we look at the £580k from the total Project Value perspective (£29-million) it’s works out as only 2%.

So here’s the point. If 2% could be shaved off the total Project Value up-front at Design/Build stage the £580k saving becomes money up front, cashed in the bank from Year Zero – money that doesn’t need a 29-year wait to get back in hand. To me this sounds like a better deal for any building Owner/Operator?

If we look at this from the Building Performance Modelling perspective it gets interesting. We spend fees on Energy Modelling and associated analysis for Green Building Certification schemes (BREEAM, LEED etc) but do we really use these intelligent 3D models to their full potential from a Cost modelling perspective?

Surely with the BIM analysis models that are being developed for purposes of Building Performance Analysis (Energy, Daylight, Natural Ventilation, Overheating studies etc) it’s an easy transition to further develop these models as accurate Cost models? In this way more time and resource could be used on predictive modelling of Cost based scenarios? We’re all well versed in scenario based energy modelling (e.g. multiple changes to a wall U-values, HVAC plant efficiencies etc) and we can predict the resulting % energy savings such measures will have against a baseline figure, but do we really consider these ‘energy’ measures from a Cost perspective?

I will continue on this same theme in a future Post but am interested to hear the industry feedback on this to date. How many Building Performance Analysis teams out there are actively involved in BIM based Cost modelling on a day-to-day basis? Where do you get the data for the Cost models? Is there more that the ‘modelling’ industry can do to populate better Cost models – or is it simply a bridge too far with insufficient Cost datasets currently available? Is a dedicated Project Quantity Surveyor needed for a detailed Cost analysis or can the modelling industry do more to support early stage scenario based Cost modelling of this nature?

Got some feedback that you’d like to share with Mark? Click here to comment on the original post on LinkedIn or click here to email Mark.

John-Lewis

Is integrating energy management with 3D modelling and BIM (Building Information Modelling) the route to better communication between a building’s design team and its operation team?

Technological advances which enable operational data to be combined with 3D modelling have been around for years. However, uptake of this calibrated simulation route has been hindered by access to data, lack of detailed HVAC modelling and lack of synergy and communication between the different teams involved in the process.

Implementing a calibrated simulation process at all stages of the building lifecycle from design, through commissioning and handover can deliver intelligent energy efficiencies, alongside healthy and comfortable buildings. On a recent project IES achieved the UK’s first LEED Gold Pharmaceutical Warehouse and delivered a customised operational energy dashboard using this principle.

While with Lateral Technologies, IES helped design the most sustainable John Lewis store to date, John Lewis York.

Designing, handing over and operating the first BREEAM Outstanding department store

Lateral Technologies worked with IES Consulting as a technology partner to design a store which could achieve a 30% reduction in the benchmark carbon figure. In July 2014 their creation became the first department store in the world to be awarded BREEAM Outstanding. Currently the project is achieving a 43% reduction on the benchmark figure based on other similar John Lewis stores.

Operational data from similar benchmark buildings was used to strengthen the new build design and inform the innovative low carbon M&E design. IES as the technology partner helped Lateral achieve incredibly detailed HVAC modelling. Then IES technology was used to import the actual building data back into the model, so the occupied building could be continuously analysed to quickly identify any performance gaps and deliver a soft landing.

Throughout the project, Lateral Technologies kept the energy initiative at the centre of design and construction decisions. The design included advanced modelling, use of LED lighting, photovoltaic solar panels, free cooling, efficient thermal design of the roof and walls to reduce heat loss and gain and the building being 70% more air tight than required.

At the same time, both John Lewis and Lateral Technologies were keen to monitor the performance of the shop after it opened. “All too often a good design fails to deliver the energy savings anticipated because of changes made during the construction phase or because occupiers don’t know how to best control the building,” explains Paul Paterson, sustainability design manager at Lateral Technologies. “Instead of waiting months for a higher than expected energy bill to flag up a problem, as is all too common practice, we wanted to find a way of continually analysing the building to identify any problem areas from day one.”

The project benefitted John Lewis by reducing carbon emissions including operational energy use and allowed the measuring and monitoring of real time energy use. This monitoring will provide future benefit to the store through understanding how energy use can be reduced and will also allow the opportunity for use in future design and construction projects, to provide the most sustainable stores.

Paul Paterson, explains why they turned to IES, the world leaders in energy modelling. “The way IES is pushing the boundaries of modelling, from using higher levels of detail to optimise design at all levels, to automatically sending operational data back into the model, to deliver impressive levels of post occupancy evaluation, made them the perfect fit for us.”

He adds, “Far from considering our job done, we’re now using IES-SCAN, a new powerful IES tool, to import the actual building data back into the model, so we can continuously analyse the occupied building to quickly identify any performance gaps to deliver a soft landing. The level of detail provided by the model is incredible, enabling us to analyse how everything from the HVAC to the escalators to the catering equipment is performing.”

He concludes, “The best thing about IES-SCAN is that instead of having to wait for a utility bill or spend days manually extracting data from the BMS, it lets us easily see which sustainability features are proving the most effective, helping us to decide which future improvements will have the biggest impact on other stores.”

Lateral Technologies were awarded the 2014 John Lewis Carbon Reduction award. The full case study can be read here.

Using performance simulation technology in this manner can drive efficiencies and close the performance gap between design intention and how a building actually operates in the real world. The performance gap, is a well-documented disconnect between the design and compliance models of buildings and the reality of how they perform.

IES has been working to enable the power of its leading building performance analysis software, the VE, to be used on buildings from design, through commissioning on into operation, in order to address this issue.

Our recent innovations enable us to link together operational building data (e.g. Smart/AMR Meters, Sub Meters, BMS Equipment, Environment Sensors, other building systems such as lighting, and other available external data sources such as weather) with 3D performance models. This means that real data rather than design data can be used directly in calibrated simulation models enabling more accurate predictions.

Post Occupancy Evaluation: Integrating renewables

Working for NHS Ayrshire and Arran, IES undertook an independent audit of the building performance of the new Girvan Community Hospital, which opened in 2011. The building set a new standard for hospital design for the NHS in Scotland and was the product of a three-year intensive consultation and design process which involved hospital staff and community members. Sustainability and energy considerations informed the design process from the start leading to the provision of a biomass boiler and wind turbine.

IES has integrated its technology with the BMS, wind turbine, AMR and sub-meter infrastructure to look at the buildings energy demand in conjunction with energy generation and is now investigating opportunities to decrease energy demand and deliver an on-going feed of data to a cloud based portal.

Using operational data to deliver continuous system tuning and commissioning

A proof of concept study for Glasgow City Council explored how advanced analytics can be used to refine building management, energy investment strategy and define ROI targets. IES Consulting worked with the council across six sites: Riverside Primary School, Riverside Museum, Kelvingrove Art Gallery and Museum, City Chambers, Exchange House and Collegelands. A robust framework for data collection was created, reduction potential assessed and assuming a 3-5 year ROI it was proven that reductions in the region of £255k-£425k were possible and would deliver a reasonable capital budget if re-invested into improvement options. Read the full case study here.

The full potential of these technological advances has yet to be fully realised. However, with projects focused on the easy energy and carbon saving opportunities of energy efficient lighting and voltage power optimisation finalising, companies with more mature energy management programs are looking for the next wave of energy savings.

Extensive use of energy management software to monitor energy usage and gain visibility of use and associated cost, must surely lead on into optimising HVAC systems. Utilising the capabilities calibrated simulation delivers will enable more than just superficial analytics of usage patterns. It will in fact allow this information to be assessed against truly personalised virtual assessments of how the actual building to should be performing. This will ultimately peel back another layer of confusion thereby highlighting the hidden inefficiencies.

Find out more about how IES can help you make the most out of your building data here.

Team IES

 

You may remember we blogged back in August about our participation in the ASHRAE LowDown Showdown competition. Well, we have some great news… Team IES won the Best Energy Use Results category! Liam Buckley coached the winning team, fighting off competition from seven other practitioner teams, representing software-specific tools from: Autodesk, Carrier, DesignBuilder, eQUEST, EnergyPlus, Sefaira, and Trane. We asked Liam to tell us more about the winning entry and the winning team…

Our brief was to design a three-story; 53,600-square-foot office building that included a number of specific design challenges, but also encouraged design creativity. Projects were judged on energy efficiency, design creativity, workflow innovation, teamwork and collaboration.

Obviously, the team decided to make the challenge even more challenging by locating the building in downtown Boulder, where the climate experiences vast and extreme variations including annual external conditions ranging from (-4° F to 93°F); (6% -100% Relative Humidity) and commonly occurring daytime-to-night-time temperature swings of 35°F.

The team considered 150+ Energy Conservation Measures (ECMs) and eventually chose 25-30 strategically sequenced ECMs, which included daylight harvesting controls; natural ventilation with exposed thermal mass and automated night-purge control; an air-to-water heat pump; energy-star equipment; plug load schedules from metered ZNE evangelists; fixed and dynamic solar shading; airside heat-recovery wheel; IT server virtualization; radiant floors for improved thermal comfort; an optimized electric lighting design; a high-performance envelope with heat-mirror glazing and insulated panels. Finally, the integral ECM of the building showcased a passive negatively-airflow-integrated atrium, which considered all climatic eventualities.

To compliment the solar hot-water heating system, which was coupled with electricity-generating PV panels, additional explicit onsite renewable energy technologies included 5 Vertical Axis Wind Turbines. These were further optimized by the building architecture.

Our team wanted to ensure that the design would not only meet net-zero standards for next year, but that 50 years down the line, would still be operating at net-zero energy. To ensure this, we morphed the TMY15 weather data 50 years into the future (to 2064) and planned for the addition of two building-integrated evaporative down-draft cool towers that assist with cooling, which would keep the building operating at zero net energy despite higher cooling loads.

I was thrilled that our team won this award for Best Energy Use Results. The team worked really hard; although the IESVE is a powerful software suite with vast capabilities, the tools are only as good as the people using them, and we had an incredible team using them. They deserved it. It was a real pleasure working with such a talented group of people.

The team members were: Anna Osborne (Integral Group), Ben Brannon (Arup), Shona O’Dea (DLR Group), Megan Gunther (Affiliated Engineers, Inc.), Cory Duggin (TLC Engineering for Architecture),  Greg Romanczyk (exp) and Scott West (HKS Inc.).

Our team has created a video presentation of the winning design which can be viewed at https://youtu.be/7V5LktxK5ig.

« Older Entries  

Featured Video

Copyright © 2009 Integrated Environmental Solutions Limited. All rights reserved